杂散的相关性允许灵活的模型在培训期间预测很好,但在相关的测试人群中仍然很差。最近的工作表明,满足涉及相关诱导\ exuritiT {Nuisance}变量的特定独立性的模型在其测试性能上保证了。执行此类独立性需要在培训期间观察到滋扰。然而,滋扰,例如人口统计或图像背景标签通常丢失。在观察到的数据上实施独立并不意味着整个人口的独立性。在这里,我们派生{MMD}估计用于缺失滋扰下的不变性目标。在仿真和临床数据上,通过这些估计优化实现测试性能类似于使用完整数据的估算器。
translated by 谷歌翻译
To meet the fairly high safety and reliability requirements in practice, the state of health (SOH) estimation of Lithium-ion batteries (LIBs), which has a close relationship with the degradation performance, has been extensively studied with the widespread applications of various electronics. The conventional SOH estimation approaches with digital twin are end-of-cycle estimation that require the completion of a full charge/discharge cycle to observe the maximum available capacity. However, under dynamic operating conditions with partially discharged data, it is impossible to sense accurate real-time SOH estimation for LIBs. To bridge this research gap, we put forward a digital twin framework to gain the capability of sensing the battery's SOH on the fly, updating the physical battery model. The proposed digital twin solution consists of three core components to enable real-time SOH estimation without requiring a complete discharge. First, to handle the variable training cycling data, the energy discrepancy-aware cycling synchronization is proposed to align cycling data with guaranteeing the same data structure. Second, to explore the temporal importance of different training sampling times, a time-attention SOH estimation model is developed with data encoding to capture the degradation behavior over cycles, excluding adverse influences of unimportant samples. Finally, for online implementation, a similarity analysis-based data reconstruction has been put forward to provide real-time SOH estimation without requiring a full discharge cycle. Through a series of results conducted on a widely used benchmark, the proposed method yields the real-time SOH estimation with errors less than 1% for most sampling times in ongoing cycles.
translated by 谷歌翻译
The proliferation of smartphones has accelerated mobility studies by largely increasing the type and volume of mobility data available. One such source of mobility data is from GPS technology, which is becoming increasingly common and helps the research community understand mobility patterns of people. However, there lacks a standardized framework for studying the different mobility patterns created by the non-Work, non-Home locations of Working and Nonworking users on Workdays and Offdays using machine learning methods. We propose a new mobility metric, Daily Characteristic Distance, and use it to generate features for each user together with Origin-Destination matrix features. We then use those features with an unsupervised machine learning method, $k$-means clustering, and obtain three clusters of users for each type of day (Workday and Offday). Finally, we propose two new metrics for the analysis of the clustering results, namely User Commonality and Average Frequency. By using the proposed metrics, interesting user behaviors can be discerned and it helps us to better understand the mobility patterns of the users.
translated by 谷歌翻译
Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency communications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient, and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet} (\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs, we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to overcome the computational cost by training the model on a specific feature map rather than all the features. The dataset and code are available as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.
translated by 谷歌翻译
持久图(PDS)通常以同源性类别的死亡和出生为特征,以提供图形结构的拓扑表示,通常在机器学习任务中有用。先前的作品依靠单个图形签名来构建PD。在本文中,我们探讨了多尺度图标志家族的使用,以增强拓扑特征的鲁棒性。我们提出了一个深度学习体系结构来处理该集合的输入。基准图分类数据集上的实验表明,与使用图神经网络的最新方法相比,我们所提出的架构优于其他基于同源的方法,并实现其他基于同源的方法,并实现竞争性能。此外,我们的方法可以轻松地应用于大尺寸的输入图,因为它不会遭受有限的可伸缩性,这对于图内核方法可能是一个问题。
translated by 谷歌翻译
基于注意力的神经网络在许多AI任务中都普遍存在。尽管其出色的算法性能,但注意力机制和前馈网络(FFN)的使用仍需要过多的计算和内存资源,这通常会损害其硬件性能。尽管已经引入了各种稀疏变体,但大多数方法仅着重于缓解算法级别上的二次注意力缩放,而无需明确考虑将其方法映射到真实硬件设计上的效率。此外,大多数努力仅专注于注意机制或FFN,但没有共同优化这两个部分,导致当前的大多数设计在处理不同的输入长度时缺乏可扩展性。本文从硬件角度系统地考虑了不同变体中的稀疏模式。在算法级别上,我们提出了Fabnet,这是一种适合硬件的变体,它采用统一的蝴蝶稀疏模式来近似关注机制和FFN。在硬件级别上,提出了一种新颖的适应性蝴蝶加速器,可以在运行时通过专用硬件控件配置,以使用单个统一的硬件引擎加速不同的蝴蝶层。在远程 - ARENA数据集上,FabNet达到了与香草变压器相同的精度,同时将计算量减少10到66次,参数数量为2至22次。通过共同优化算法和硬件,我们的基于FPGA的蝴蝶加速器在归一化到同一计算预算的最新加速器上达到了14.2至23.2倍的速度。与Raspberry Pi 4和Jetson Nano上优化的CPU和GPU设计相比,我们的系统在相同的功率预算下的最大273.8和15.1倍。
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译
REED继电器是功能测试的基本组成部分,与电子产品的成功质量检查密切相关。为了为REED继电器提供准确的剩余使用寿命(RUL)估计,根据以下三个考虑,提出了具有降解模式聚类的混合深度学习网络。首先,对于REED继电器,观察到多种降解行为,因此提供了基于动态的$ K $ -MEANS聚类,以区分彼此的退化模式。其次,尽管适当的功能选择具有重要意义,但很少有研究可以指导选择。提出的方法建议进行操作规则,以实施轻松实施。第三,提出了用于剩余使用寿命估计的神经网络(RULNET),以解决卷积神经网络(CNN)在捕获顺序数据的时间信息中的弱点,该信息在卷积操作的高级特征表示后结合了时间相关能力。通过这种方式,lulnet的三种变体由健康指标,具有自组织地图的功能或具有曲线拟合的功能构建。最终,将提出的混合模型与典型的基线模型(包括CNN和长期记忆网络(LSTM))进行了比较,该模型通过具有两个不同不同降级方式的实用REED继电器数据集进行了比较。两种降解案例的结果表明,所提出的方法在索引均方根误差方面优于CNN和LSTM。
translated by 谷歌翻译
作为有关健康状况的重要组成部分,数据驱动的先进健康(SOH)估计已成为锂离子电池(LIBS)的主导地位。为了处理跨电池的数据差异,当前的SOH估计模型参与转移学习(TL),该模型保留通过重复使用离线训练模型的部分结构而获得的APRIORII知识。但是,电池完整生命周期的多种降解模式使追求TL的挑战。引入了阶段的概念来描述呈现出类似降解模式的连续循环的集合。提出了一个可转移的多级SOH估计模型,以在同一阶段跨电池执行TL,由四个步骤组成。首先,有了确定的阶段信息,将来自源电池的原始循环数据重建到具有高尺寸的相空间中,从而探索传感器有限的隐藏动力学。接下来,在每个阶段跨循环的域不变表示是通过与重建数据的循环差异子空间提出的。第三,考虑到不同阶段之间不平衡的放电循环,提出了一个由长期短期存储网络和具有拟议时间胶囊网络的强大模型组成的切换估计策略,以提高估计精度。最后,当目标电池的循环一致性漂移时,更新方案会补偿估计错误。提出的方法在各种传输任务中的竞争算法优于其竞争算法,用于带有三个电池的运营基准测试。
translated by 谷歌翻译
准确估计电池的健康状况(SOH)有助于防止电池供电的应用出乎意料的失败。随着减少新电池模型培训的数据需求的优势,转移学习(TL)是一种有前途的机器学习方法,该方法应用了从源电池中学到的知识,该方法具有大量数据。但是,尽管这些是成功的TL的关键组成部分,但很少讨论源电池模型是否合理以及可以传输的信息的哪一部分的确定。为了应对这些挑战,本文通过利用时间动态来协助转移学习,提出了一种可解释的基于TL的SOH估计方法,该方法由三个部分组成。首先,在动态时间扭曲的帮助下,放电时间序列的时间数据被同步,从而产生了循环同步时间序列的翘曲路径,这些时间序列负责使周期上的容量降解。其次,从周期同步时间序列的空间路径中检索的规范变体用于在源电池和目标电池之间进行分布相似性分析。第三,当分布相似性在预定义的阈值范围内时,通过从源SOH估计模型转移常见的时间动力学来构建一个综合目标SOH估计模型,并用目标电池的残留模型补偿错误。通过广泛使用的开源基准数据集,通过根平方误差评估的提议方法的估计误差高达0.0034,与现有方法相比,准确性提高了77%。
translated by 谷歌翻译